
Support for Input Adaptability in the ICON Toolkit

Pierre Dragicevic
LIIHS/IRIT

Université Paul Sabatier
F-31062 Toulouse Cedex, France

Tel: (+33) 561-556-965

dragice@irit.fr

Jean-Daniel Fekete
INRIA Futurs/LRI

Bat. 490, Université Paris-Sud
F91405 Orsay Cedex, France

Tel: (+33) 169-156-623

Jean-Daniel.Fekete@inria.fr

Figure 1: Configuring a Drawing Application for Bimanual Interaction using ICON

ABSTRACT
In this paper, we introduce input adaptability as the ability of an
application to exploit alternative sets of input devices effectively
and offer users a way of adapting input interaction to suit their
needs. We explain why input adaptability must be seriously con-
sidered today and show how it is poorly supported by current
systems, applications and tools. We then describe ICON (Input
Configurator), an input toolkit that allows interactive applications
to achieve a high level of input adaptability. We present the soft-
ware architecture behind ICON then the toolkit itself, and give
several examples of non-standard interaction techniques that are
easy to build and modify using ICON’s graphical editor while
being hard or impossible to support using regular GUI toolkits.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User Inter-
faces – user interface management systems, input devices and
strategies, prototyping, interaction styles,

General Terms
Design.

Keywords
Interaction techniques, Input devices, Visual programming, Tool-
kits, Adaptability.

1. INTRODUCTION
For years, using a computer was all about typing on a keyboard
and manipulating a mouse to select or drag objects on the screen.
Today, we are facing radical changes in the computer industry that
seriously throw back those standards into question.

A key evolution is the advent of mobile computing and the prolif-
eration of heterogonous platforms such as palmtops, laptops,
wearables, tablet PCs and smart phones. People are discovering
new ways of interacting, and techniques such as gesture interac-
tion or speech recognition are now becoming popular. Mean-
while, input hardware on traditional desktop computers is becom-
ing more and more rich and complex: mice, keyboards and joy-
sticks are continuously being augmented with new controls (see
[29] for example), whereas alternative devices such as web cams,
voice recognition microphones, tablets, and dedicated gaming
devices are being more and more affordable and fashionable.
One reason is that tasks performed on desktop computers, includ-
ing web browsing, music listening or watching movies, have be-
come extremely varied. The population of desktop computer
users has also gained in experience, and their demands evolved
from simplicity and ease of use to efficiency and speed.

Unfortunately, available applications and tools currently put a
brake on the evolution of input interaction: they are still designed
for a stereotyped set of standard input devices and interaction
techniques, and are far from being able to adapt to a high diversity
of input peripherals, interaction styles and platforms.

In this article, we introduce input adaptability as the ability of an
interactive application to exploit alternative input devices effec-
tively and offer users a way of adapting input interaction to suit
their needs. We explain why input adaptability must be seriously
considered and survey the different levels of support for input
adaptability in today’s systems. We then describe ICON (Input
Configurator), a novel system that addresses main input

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICMI’04, October 13–15, 2004, State College, Pennsylvania, USA.
Copyright 2004 ACM 1-58113-890-3/04/0010...$5.00.

adaptability issues by making interactive applications fully input-
configurable. We detail the underlying data-flow architecture
behind ICON and we show how ICON configurations can be
adapted to handle missing input devices or to support multiple
input devices and advanced interaction techniques.

2. INPUT ADAPTABILITY
In this section, we define our terminology and explain the issues
related to input adaptability.

2.1 Matching Input with the Context
An interaction technique is a way of using a physical input device
to accomplish a given task [17]: moving a cursor, clicking on
buttons, dragging objects are interaction techniques commonly
associated with pointing devices. We call input technique the
combination of physical input devices with an interaction tech-
nique that describes the way they are logically used. The numer-
ous input techniques described in the HCI literature clearly dem-
onstrate that the quality of user interfaces strongly depends on the
choice of appropriate input techniques according to application’s
tasks, users and working environment [27]:

Application. Input techniques are strongly related to tasks. Bux-
ton gave a good idea of how subtle the notion of device/task com-
patibility may be [11]. He showed how each input device, by its
intrinsic properties, is unique and appropriate only for a limited
set of tasks, making it difficult to categorize devices into classes
of equivalence [11]. Task-dedicated input devices are widely
used in geometric modelling and video games, and can even be
part of the application design [25].

Users. “Designing for the user” is the motto of the HCI commu-
nity. In particular, taking user’s abilities and skills into considera-
tion can dramatically improve interaction. Prolific work in the
field of “informal interaction” describe interaction techniques and
input devices that take advantage of ordinary skills such as hand-
writing or speech, for achieving a more natural interaction [5],[9].
Other work describe input techniques designed for special skills
such as tape drawing [3] or puppet animation [25]. Common
skills can also include, for example, driving a car or playing an
instrument. On the other side, taking user’s disabilities into ac-
count is even more important while designing input techniques.
Significant work in the field of accessibility describe various input
techniques for making computers usable by people with special
needs [32],[12]. But again, no user taxonomy can capture all
individual differences, and taking user preferences into considera-
tion is also a central concern [36].

Working environments. Just like users, working environments
can set important constraints or offer high potential that must be
taken into account. Large desktops allow the use of multiple de-
vices and controllers, and alternative devices such as micro-
phones, web cams, tablets, or dedicated gaming devices are in-
creasingly available. Conversely, noise, limited footprint, or mo-
bility are characteristics of the environment that restrict the set of
usable input techniques. Tablet PCs and PDAs, for example,
make extensive use of pen-based interaction techniques, while
new techniques are regularly being proposed [37], [34].

2.2 Limitations of Standard Input Techniques
As opposed to previous examples, most real-world applications
follow the “standard input techniques” approach. On desktop
computers for example, applications are essentially controlled
using a mouse, a keyboard, and a fixed set of interaction tech-
niques such as clicking, dragging, or text input. Those “WIMP”
input techniques provide cross-application reusability and consis-
tency, and they can be carefully designed and tested. However,
this model has serious shortcomings in terms of input adaptability:

Standard input techniques are never fully appropriate. Stan-
dard input techniques target the average user, an average envi-
ronment, and a set of average tasks (i.e. controlling standard wid-
gets, such as clicking on a button or selecting a menu item). Be-
cause those techniques are too generic, they are never fully appro-
priate for the context and the application tasks [11].

Standard input techniques can be fully inappropriate. Stan-
dard input techniques can become totally inappropriate, for exam-
ple when one or both standard devices are not available. On al-
ternative platforms like mobile computing, interaction has been
redesigned, but applications are still developed on top of a new
set of generic input techniques. Although it is important for users
and software companies that the same application runs on the
most popular platforms, “standard input techniques” approaches
do not address cross-platform portability.

2.3 Defining Input Adaptability
For a better accessibility and portability, it is critical for interac-
tive applications to be able to exploit modified sets of input de-
vices. For optimised usability, they must make use of appropriate
interaction techniques, according to the available devices but also
to the specific application tasks and the end user preferences. In
this paper these input-related issues will be denoted by the single
term of input adaptability. Note that there already exists a large
terminological literature on adaptability in HCI (see [45] for ex-
ample). With respect to this body of work, we aim at providing a
simple and operational term for making our position clearer,
rather than trying to establish a new comprehensive definition.
We therefore introduce input adaptability as the simple combina-
tion of controllability, accessibility and configurability:

1. Controllability is the application’s ability to use enriched input
or to use standard input more effectively. Enriched input can
range from additional controls on standard devices to multi-
dimensional, high-bandwidth devices, and multiple devices and
modalities. Effective use of rich input implies using interaction
techniques making smart use of the full input bandwidth and de-
vice/task compatibilities. Standard input devices can also be bet-
ter exploited by new interaction techniques such as gesture recog-
nition.
2. Accessibility is the application’s ability to use impoverished
input. This can range from a missing standard device to very low-
bandwidth input such as a single button. Supporting impover-
ished input effectively implies using richer interaction techniques
to compensate for the decreased bandwidth and device/task com-
patibility.
3. Configurability expresses user’s ability to freely choose how
to use his input devices for controlling the application. This
ranges from device selection and basic action mapping customisa-
tion to specification of rich interaction techniques. Ease of speci-
fication also plays a crucial role in input configurability.

2.4 Today’s Support for Input Adaptability
In this section we describe the standard level of input adaptability
provided by operating systems and WIMP graphical toolkits. We
then explain how some applications try to achieve a better level of
input adaptability by hacking this standard interaction model.

2.4.1 The Standard Level of Input adaptability
Most conventional desktop applications exclusively rely on tradi-
tional WIMP input systems. We describe the minimum level of
input adaptability they are able to achieve.

Controllability. Traditional WIMP input systems make use of
data coming from standard devices but ignore any additional input
bandwidth provided by other devices. Drivers for alternative
devices sometimes allow some generic control by sending key-
board keys or "pushing" the system cursor. But this compatibil-
ity-based control implies ignoring specific capabilities of the de-
vice, e.g. when a pressure sensitive tablet is used as a mouse, its
high resolution and pressure information are not used.

Accessibility. Keyboard shortcuts from window managers and
toolkits provide some redundancy that can sometimes replace a
missing mouse. Windows accessibility allows mouse cursor con-
trol with keyboard, and provides alternative keyboard techniques
for physically-challenged users. However, because input services
from the system to the toolkit have all been built with standard
input techniques in mind, there is no well-designed accessibility
interaction technique. At best, missing input devices dramatically
degrade the usability of applications.

Configurability. Device drivers allow minimal configuration of
input hardware and low-level input handling, like mouse cursor
acceleration or double-click speed. At higher levels, minimal
input customisation is sometimes available through form-filling
dialogs, often for configuring keyboard shortcuts. However
WIMP systems do not allow rich configurability, because input
handling is split up among several monolithic black boxes.

2.4.2 Enhanced Input Adaptability
Some applications provide a better controllability by accessing
alternative input devices at a low level. We describe them in this
section, as well as the tools and strategies commonly used for
enhancing applications’ accessibility and extensibility.

Musical and graphical design applications. Several semi-
professional applications make use of non-standard devices by
accessing them at a low level. Most applications for musical
composition can read data from musical instruments through the
MIDI protocol. Adobe Photoshop [1] supports tablet devices and
exploits accurate positional values of the stylus for drawing; addi-
tional dimensions such as pressure or tilt can be assigned to any
brush attribute through a dialog box.

Computer games. Computer games support increasingly sophis-
ticated gaming devices such as joysticks with multiple controls or
simulation-oriented devices. They traditionally give the user
choice between keyboard, mouse or joystick to control the game.
Most of them also provide free assignment of two-state controls –
such as buttons or keys – to actions. Configurability of continu-
ous channels is more limited, and the user is at best allowed to
play with a few parameters such as sensitivity or Y axis inversion.
DirectInput 8 adds built-in configurability with a standard but
nonetheless limited input configuration dialog [30].

Hardware and Software Accessibility. Some add-on tools pro-
vide generic and sometimes configurable control of existing ap-
plications with alternative devices, usually for accessibility pur-
poses. Accessibility can be achieved by hardware emulation,
software emulation or by support inside specific applications.
Some O.S. and toolkits such as Java/Swing allow external appli-
cations to access the internal states of the application’s widgets
and control them from the outside. But this approach leads to
poor interfaces since interaction techniques provided by the com-
ponents are not suited to alternative modes of control.

Scripting languages. Some applications use scripting languages
to provide extensibility such as for configuring keyboard actions.
With Quake3’s scripting language, elaborate action bindings can
be built, that use conditional action triggering, sequential actions,
and dynamic reassignments [20]. New interaction techniques are
sometimes implemented through scripting, e.g. the ViaVoice
voice recognition system is integrated with Microsoft Word via
scripts. But scripts are mainly designed for creating new func-
tions, not new interactions.

2.4.3 Systems and Tools from Research
Compared to the prolific work on information visualization and
advanced graphical effects, input has been little studied [11].
Some contributions, however, have made a step towards input
adaptability, although none of them have addressed all of its as-
pects. Most significant work include advanced graphical toolkits
and interactive behaviour editors.

Post-WIMP toolkits. Graphical toolkits such as Garnet/Amulet
[33] and Artkit/Subarctic [41] describe standard event handling in
a cleaner and more extensible way than traditional toolkits and
support techniques such as gesture recognition. However, they
are aware of a limited set of input devices and require important
modifications to handle any new interaction paradigm. Post-
WIMP toolkits are specialized in specific interaction paradigms
such as gesture recognition [20], ambiguity solving through me-
diation [28], multi-pointer interaction [8], [21], context awareness
[38] or augmented virtuality [18]. They allow a better controlla-
bility using standard or non-standard devices, but still support
limited sets of input devices and use them in ad-hoc ways.

3D Toolkits. 3D toolkits such as World-Toolkit [39] or Avid/
Softimage [2] support alternative input devices, mainly Space-
Mice and 3D trackers. Their channel-based models allow free
assignation of device dimensions to attributes of 3D objects, al-
lowing for rich and configurable interaction. However, more
elaborate input techniques like speech or gesture control are not
supported and toolkit components can not be controlled with
these devices.

Behaviour editors. Constraint-based editors such as Thinglab
[10] or Fabrik [23] allow building some parts of interactive appli-
cations graphically, mainly for describing geometrical layout be-
haviours. Control-flow approaches such as ICO/PetShop [4] use
Petri Nets or State-Transition Diagrams to describe control-
intensive, highly modal parts of interactive applications. Data-
flow-based editors have been widely used but their application to
interaction specification has been rarely exploited outside the area
of 3D authoring and animation. Virtools Dev [42], for example,
uses a graphical data-flow editor for specifying 3D input. Jacob’s
VRED system [24] uses an hybrid control/data-flow editor to
describe discrete and continuous aspects of 3D interaction. The

data-flow approach has proved to be quite promising for describ-
ing interactions with multiple devices. But as far as we know, the
only attempt to use it for describing 2D interaction has been made
by Whizz’Ed [15]. This notation has been successfully used to
specify animation and bimanual interaction, though other tech-
niques and input devices have not been investigated.

3. THE ICON INPUT TOOLKIT
ICON (Input Configurator) is a novel system for designing input-
reconfigurable interactive applications, based on a reactive data-
flow architecture that describes input techniques using intercon-
nected modules. In this section, we give an overview of the con-
cepts behind ICON and then describe the tool itself. We finally
show how, by relying on ICON, applications can reach a high level
of input adaptability.

3.1 Overview of ICON Components
Input ConfigurationDevice

Figure 2: ICON components.

Devices and slots. ICON’s model is essentially based on devices,
which are a broad generalization of input devices: ICON’s devices
can produce output values, but can also receive input values.
Figure 2 shows on the left the graphical representation of a de-
vice. A device contains typed channels called input slots and
output slots, as well as parameters similar to JavaBeans accessors
[14] to configure them. Slot types belong to a small set of basic
types and the Object type, and each type has a distinct graphical
representation (e.g. circle for Booleans, triangle for integers).
Slots can be hierarchically grouped to form structured types (see
Figure 2).

Implicit I/O. Non-deterministic devices are described as having
implicit input (see Figure 2), i.e. additional source of information
not fully described by its set of input slots. Examples of such
devices include devices which are producing data on their own
(physical input devices) or asynchronous devices which are tem-
porally non-deterministic. Similarly, devices having implicit out-
put (see Figure 2) produce alternative effects in addition to simply
putting values on the output slots. Examples are devices manipu-
lating external objects or producing user feedback.

Connections. An input slot of a device can be linked to one or
several compatible output slots of other devices by connections,
which are represented by wires (see Figure 2).

Device Folders. There are three main categories of devices: Sys-
tem devices describe system resources such as input peripherals;
Library devices are system-independent utility devices such as
processing devices and adapters; Application devices are devices

that control an application. An instance of each device is avail-
able in a container which is hierarchically organized into device
folders. Devices are copied from device folders in order to be
used, just like prototype-based languages.

Input configurations. An input configuration is defined by a set
of system and application devices, and a set of library devices and
connections which map the system devices to the application de-
vices (see Figure 2). ICON is modular, and subparts of an input
configuration can be encapsulated into compound devices. For
example, an input device and a feedback device can be connected
then grouped to form a compound device having both external
input and external output.

Execution. Whereas the contract of a device is simply to update
its output slots every time it is asked to, ICON’s execution model
describes which devices must be triggered and when, and how
values are propagated to other devices. The propagation mecha-
nisms used are very effective and use simple data structures.
ICON’s execution model builds upon the semantics of reactive
synchronous languages such as Esterel [7] or Lustre [19], which
are used to describe systems that continuously react to the envi-
ronment.

3.2 Interaction Techniques as Configurations
From our point of view, implementations of interaction tech-
niques are essentially interpretation and feedback mechanisms.
User’s actions (or input device data) are interpreted to determine
how they will modify the state of the application. In some cases
the system must provide additional feedback on the way it inter-
prets data.

Keyboard A B C Text

Ins. Point

Figure 3: Interpreting keyboard actions.

Figure 3 shows the interpretation of keyboard actions in a text
editing context (slots are not represented). A “key press” action is
transformed into a raw key code through device A, then into a
localized symbol trough device B. Device C generates strings
from combinations of symbols. Those strings are finally used by
the text editor. Besides encapsulating a processing function, each
device provides its own abstraction of the keyboard. For exam-
ple, a text component expects to receive strings but the insertion
point is best controlled with a lower-level keyboard.

Mouse Cursor Scrollbar

Figure 4: Scrolling through a document.

ICON describes feedback with implicit input and output. Figure 4
gives an example of scrolling through a document, and shows the
feedback loop through implicit I/O. The Mouse device receives
implicit input from the user, the Cursor device produces immedi-
ate feedback towards this user and the Scrollbar tells the applica-
tion to update its document view.

3.3 The Toolkit
The ICON toolkit contains an extensible set of system devices and
library devices for building input configurations, and provides a
reactive machine for executing them. Input configurations run
quite fast, with a negligible propagation time compared to useful
processing code. ICON is written in Java, and uses native libraries
for managing input devices.

3.3.1 ICON Devices

System devices. ICON toolkit’s system devices provide low-level
access to standard and alternative input devices. Under Microsoft
Windows operating systems, it currently supports multiple mice
through the CPNMouse library [43], multiple graphical tablets
through Wintab API [26], multiple gaming devices and 6DOF
controllers through DirectInput [30], speech recognizers through
IBM JavaSpeech [40] and MIDI musical instruments and control-
lers. Under X Windows platforms, it provides access to XInput
Extension [16] devices.

Figure 5: Mouse, keyboard, tablet and speech input devices.

Figure 5 shows some input devices as they appear in ICON: the
low-level mouse sends screen-independent delta values; The key-
board sends key codes as well as state changes for individual
special keys such as arrow keys or modifiers ; The graphical
tablet sends positional, pressure and tilt values as well as specific
information for each individual pointer (i.e. stylus tip, stylus
eraser and puck) ; The speech command sends recognized strings
or their index according to the vocabulary specified in the de-
vice’s property box.

System output devices are also available, such as Midi devices for
playing music on soundcards, and speech synthesis devices using
IBM text-to-speech engines [40].

Library devices. The ICON toolkit has a set of built-in utility
devices including mathematical and Boolean operators, signal
processing devices, type adapters, and devices for conditional
control and dispatch. It also provides a set of graphical feedback
devices such as cursors and semi-transparent components, which
support overlay animation on top of Swing frames.

Toolkit devices. The Swing device folder contains widget de-
vices for controlling existing Swing applications that have no
knowledge of ICON. The JComponent device provides generic
control of Swing widgets. It can send events to widgets and mod-
ify their focused, enabled and visible states. Specific widget de-
vices allow moving scrollbars programmatically or sending
strings and caret commands to text components. All widget de-
vices contain an input slot which specifies the component they
operate on. Picking and Focus strategies are externalised and
supported by two devices. ICON also provides experimental sup-
port for the Jazz toolkit [6] using a similar interaction model.

3.3.2 Implementing New Devices
Adding utility devices. ICON’s library can be enriched with
additional devices to suit the programmer’s needs. Writing a new
processing device is quite straightforward. It mainly consists in
declaring device’s slots and implementing an update method.
This method basically checks which input slots have received a
signal, retrieve their values and puts new values on output slots.

Figure 6: ICONDraw and its application devices.

Declaring application devices. Java developers can enhance
ICON controllability of their application by implementing specific
application devices. Figure 6 shows a sample application called
ICONDraw that has been written to be entirely configurable with
ICON. Instead of listening to system events, this application sim-
ply describes the way it expects to be controlled by externalising a
set of drawing tools. Each tool basically receives activation sig-
nals, brush attributes, and one or two positions. The code for an
application device is similar to that of a utility device, except that
the update method makes application calls instead of setting out-
put values.

3.4 Building and Editing Input Configurations
ICON configurations can be built and modified using a graphical
editor. An early prototype of this editor has been described in
[44]. In this section, we give an overview of a subset of interac-
tion techniques that can be currently built using ICON.

Figure 7: Standard positional control of swing components.

Figure 8: Mouse control of the Freehand device

3.4.1 Describing Standard Input Techniques
Standard input techniques can be built and shipped with applica-
tions as default input configurations. Figure 11 shows a configu-
ration which reproduces basic positional control of Swing com-
ponents (only used slots are displayed). Relative positional values
of the low-level mouse are transformed into absolute values which
move a cursor, and sends mouse events to the Swing component
that has been picked. Similar mouse and keyboard-based control

can be built for specific application devices: Figure 8 shows basic
control of the freehand tool with a mouse. To obtain a decent
default configuration, this construction can be extended to handle
additional cursor feedback, brush attributes control, and multi-
tool control through a mode.

Figure 9: multi-pointer Interaction with Swing.

3.4.2 Adding Pointing Devices
Because each cursor device manages its own feedback, techniques
using multiple pointers are easy to describe with ICON. As shown
on Figure 9, Swing applications can be controlled this way by
simply cloning the configuration of Figure 11. This technique is
however limited due to the fact that Swing has been designed for a
single pointer (e.g., clicking somewhere with a pointer closes a
menu opened by the other pointer). In contrast, application de-
vices can be designed to support concurrency. ICONDraw’s draw-
ing tools are first-class objects that can be instantiated without
limit. This makes it possible for example to dedicate each physi-
cal device to a drawing tool. Figure 1 also shows how an addi-
tional positional device can be used to draw lines or rectangles
using bimanual interaction.

3.4.3 Making Use of Additional Dimensions
With ICON, it is also easy to exploit any additional dimension of
an input device. Figure 10 shows how the pressure channel of a
tablet can be assigned to the brush size inside ICONDraw.

Figure 10: Pressure control of the freehand device.

Figure 11: Key control adapters.

3.4.4 Switching Input Devices
Switching compatible devices such as the mouse and the tablet is
just a matter of substituting one to another in the configuration. If
devices are of different nature, emulation can be performed at
low-level by using an adapter device, or by building an emulation
technique by hand if no appropriate adapter is present. Figure 11
shows how an adapter can be inserted between a keyboard and a

cursor: the KeyControl adapter is a compound device that has
been built with ICON, and allows smooth control of continuous
dimensions using two-state devices. Of course, more device-
specific techniques can be built using ICON. For example, key-
board keys can be directly assigned to buttons in a window.

Figure 12: Speech control of a scrollbar.

3.4.5 Using Speech
Although it does not support grammars, the speech device can be
used for simple command control. Figure 12 shows a configura-
tion for controlling Swing scrollbars at model-level with com-
mands such as “less”, “little more” or “minimum”; The figure
also shows the device property windows in which the vocabulary
is specified. Examples of application-specific uses in ICONDraw
include control of the brush colour or size with commands like
“blue”, “red”, “bigger”, “smaller” or direct control of the brush
size with speech level. A “speech cursor” device technique has
also been implemented for generic speech control of applications.

3.4.6 Using Advanced Input Devices
ICON is suitable for describing highly parallel interaction tech-
niques with advanced input devices and direct control techniques.
Figure 13 shows an example of using a Magellan device for si-
multaneously controlling zoom, pan and rotation on a zoomable
document. This example, which uses our minimal ICON support
for the Jazz toolkit, also allows making annotation and moving
objects at the same time.

Figure 13: Using a pan/zoom/rotate technique
 with a 6DOF device.

Figure 14: The Toolglass and the Floating QuikWriting
 interaction techniques.

3.4.7 Using Advanced Interaction Techniques
Although simple interaction techniques can be built with ICON edi-
tor, more complete techniques are better implemented as specialized

devices. Figure 14 gives two examples of transparency-based inter-
action techniques that are currently available in ICON. The Tool-
glass device implements the Toolglass interaction technique [13],
with controllable transparency (Figure 14). This device sends acti-
vation or deactivation signals to connected tools according to posi-
tional values it receives, and renders itself on top of the application.
The “Floating QuikWriting” device, based on Ken Perlin's text
input method for PDAs [35], allows text input with a positional
device. Because it only needs a single gesture to move the caret
and insert or delete characters, it is well-adapted to proofreading
tasks. To work, it just has to be inserted between a positional de-
vice and the Swing text device. ICON also has a device that sup-
ports more general and conventional gesture techniques by using
the Satin library [22].

3.4.8 Controlling Existing Applications
Compatibility with Swing applications is built-in, but deeper con-
trol can be achieved by externalising application-specific entry
points as application devices. If full externalisation is not possible
for a big application which has not been designed for concurrent
control, partial ICON support can be achieved.

ICON can also be used for controlling non-Swing applications: ex-
cept for the small set of Swing-specific devices, ICON is independ-
ent from graphical toolkits. Control of external applications is lim-
ited by the absence of support for graphical feedback and event
deactivation. However, ICON can be used to enhance standard
event handling. Using the Java Native Interface, we implemented
devices making simple queries to the active Microsoft Word docu-
ment, and we could control commands such as cut and paste by
voice, or manipulate the document zoom with analogue physical
controls.

3.5 Discussion
3.5.1 Applicability of ICON to Post-WIMP Paradigms
ICON’s graphical editor allowed us to specify a wide range of
non-conventional interactions, although we could not experiment
with all known interaction techniques. We however think that our
approach is suitable for most Post-WIMP interaction paradigms.

First of all, ICON’s data-flow model naturally supports concur-
rency and allows to easily describe highly parallel, non-modal
interaction techniques that make use of multiple and heterogene-
ous input devices. Concurrency does not add complexity to input
configurations. Conversely, control-intensive behaviours are
better described using approaches such as State Transition Dia-
grams or Petri Nets [4]. Control (mode handling, conditional
dispatch) can still be described in ICON, the price to pray being a
visual complexity that can be reduced by module encapsulation.
We also think that control-intensive behaviours are most found in
WIMP techniques that make use of modes and multiplexing
mechanisms.

We currently support Post-WIMP interaction styles that are
mostly reactive and deterministic, and we do not address issues
such as ambiguity solving, or smart interpretation and fusion of
natural modalities. We still believe, however, that interaction
models such as [28] can highly benefit from using ICON as a
low-level layer.
Our support for overlay graphical feedback fits most Post-WIMP
look-and-feels, including gesture, Toolglasses and Pie Menus.
ICON is currently limited by the set of input APIs supported, but
because it uses very low-level abstractions there are no conceptual

limit to input device support. Most input devices are well-
described using low-level channels, and we think that full support
of a standard such as USB HID would be sufficient to take into
account nearly all existing and future devices. Emerging interac-
tion paradigms such as ubiquitous computing, context awareness
and tangible interfaces make use of sensors that can also be de-
scribed as ICON devices.

3.5.2 Support For Input Adaptability
Controllability. Programmers can make their applications more
controllable by implementing application-specific devices and
providing input configurations that exploit advanced input de-
vices and/or interaction techniques. ICON makes easy to build
device and task-dedicated interactions, and it encourages innova-
tion.
Accessibility. Building configurations with minimal accessibility
support is quite straightforward using adapter devices. New
adapter devices can be implemented in java. ICON also allows
building complex behaviours and encapsulating them into com-
pound devices. Finally, using ICON’s visual editor, the applica-
tion programmer can test and implement a wide range of dedi-
cated accessibility techniques according to specific input contexts
(users and working environments) and tasks.
Configurability. ICON’s input editor allows application users to
customize interaction techniques to suit their needs. We don’t
expect the end user to build full input configurations. Instead,
application programmers or device vendors can provide a set of
working configurations, that end users can select, parameterise or
customize, depending on their level of expertise.

4. CONCLUSION AND FUTURE WORK
In this article, we presented ICON, an input management system
that allows interactive applications to achieve a high level of input
adaptability. We introduced the term of input adaptability and
explained why it was important. We described the concepts be-
hind ICON and showed how the paradigm of cascading devices
could be used as an architectural basis to describe interaction
techniques and achieve a high level of input adaptability. We
strongly believe that the input management supported by current
GUI toolkits is not rich enough for current and future needs and
that the concept of input configurations is well suited to replace it.

We are currently extending ICON in three directions: designing
and experimenting with new interaction techniques, improving
the integration of advanced graphics toolkits such as zoomable
and 3D toolkits and supporting more input devices. ICON is cur-
rently being used in two research projects and is available as a
free Java package at the following URL: [URL omitted for
blind review]. We hope other research projects will ex-
periment with it and send us feedback to improve it.

5. REFERENCES
[1] Adobe Creative Team, Adobe Photoshop 7.0: Classroom in a

Book, Adobe Press; ISBN: 0-321-11562-7
[2] Avid Inc. Channel Developer’s Kit, Softimage Inc., 2000
[3] Balakrishnan, R. Fitzmaurice, G. Kurtenbach, G. Buxton, W.

Digital tape drawing, Proc. of UIST’99, p.161-169, November
07-10, 1999, Asheville, North Carolina, United States.

[4] Bastide, R., Navarre, D., and Palanque, P. A model-based tool
for interactive prototyping of highly interactive applications. In
CHI'02 extended abstracts on Human factors in computer sys-
tems, pages 516-517. ACM Press, 2002.

[5] Baudel, T., A mark-based interaction paradigm for free-hand
drawing, Proc. of the 7th annual ACM symposium on User inter-
face software and technology, p.185-192, November 02-04,
1994, Marina del Rey, California, United States.

[6] Bederson, B., Meyer, J., Good, L., Jazz: An Extensible Zoom-
able User Interface Graphics Toolkit in Java, In ACM UIST
2000 ACM Press, pp. 171-180. 2000.

[7] Berry, G. The Esterel v5 language primer. Tech report, april
1999. http://www-sop.inria.fr/meije/esterel/doc/main-papers.html.

[8] Bier, E.A. and Freeman, S., MMM: A User Interface Architec-
ture for Shared Editors on a Single Screen. in Proc. of UIST 91,
ACM Press, 79-86.

[9] Bolt, R. A. "put-that-there": Voice and gesture at the graphics
interface. In SIGGRAPH '80 Proc., volume 14, 1980.

[10] Borning A. Thinglab - A Constraint-Oriented Simulation Labo-
ratory. PhD thesis, Stanford University, july 1979. Also avail-
able as STAN-CS-79-746 Stanford Computer Science Depart-
ment technical report.

[11] Buxton, W. There's More to Interaction than Meets the Eye:
Some Issues in Manual Input. In Norman, D. A. and Draper, S.
W. (Eds.), (1986), User Centered System Design: New Perspec-
tives on Human-Computer Interaction. Lawrence Erlbaum As-
sociates, Hillsdale, New Jersey, 319-337.

[12] Doherty, E. Cockton, G., Bloor, C., Benigno, D. Improving the
Performance of the Cyberlink Mental Interface with the "Yes /
No Program", CHI 2001 Proc., Seattle, Washington, USA

[13] Bier, E. Stone, M. Fishkin K. Buxton, W. Baudel, T. A taxon-
omy of seethrough tools. In Proc. of the CHI'94 conference.
ACM Press, 1994, p. 358-364.

[14] Englander, R. Developing Java Beans, O'Reilly & Associates,
June 1997, ISBN: 1-56592-289-1.

[15] Esteban, O., Chatty, S., Palanque, P. Whizz'ed : a visual envi-
ronment for building highly interactive software. In Proc. of IFIP
INTERACT'95 : Human-Computer Interaction, pages 121-126,
1995.

[16] Ferguson, P. The X11 Input Extension: Reference Pages. The X
Resource, 4 (1), 1992 195--270.

[17] Foley, J., Van Dam, A., Feiner, S. and Hughues, J. Computer
Graphics Principles and Practice. Addison-Wesley, 2nd edition,
1990.

[18] Greenberg, S. and Fitchett, C. Phidgets: Easy Development of
Physical Interfaces through Physical Widgets. Proc. of the UIST
2001 14th Annual ACM Symposium on User Interface Software
and Technology, November 11-14, Orlando, Florida, p209-218,
ACM Press.

[19] Halbwachs, N., Caspi, P., Raymond, P. and Pilaud, D. The syn-
chronous data-flow programming language LUSTRE. In Proc. of
the IEEE, volume 79, September 1991.

[20] Honeywell, S. Quake III Arena: Prima's Official Strategy Guide.
Prima Publishing, 1999.

[21] Hourcade, J.P. and Bederson, B.B. Architecture and Implemen-
tation of a Java Package for Multiple Input Devices (MID), Hu-
man-Computer Interaction Laboratory, University of Maryland,
College Park, MD 20742, USA, 1999.

[22] Hong, J. and Landay, J. "SATIN: A Toolkit for Informal Ink-
based Applications." In UIST 2000, ACM Symposium on User
Interface Software and Technology, CHI Letters , 2(2), p. 63-72.

[23] Ingalls, D., Wallace, S., Chow, Y., Ludolph, F. and Doyle, K.
Fabrik : A Visual Programming Environment. In Norman Mey-
rowitz editor, OOPSLA'88 : Object-Oriented Programming Sys-
tems, Languages and Applications. pp 176-190, 1988.

[24] Jacob, R., Deligiannidis, L. and Morrison, S. A Software Model
and Specification Language for Non-WIMP User Interfaces.

ACM Transactions on Computer-Human Interaction, 6(1) :1-46,
march 1999.

[25] Knep, B., Hayes, C., Sayre, R., Williams, T. (1995). Dinosaur
input device. Proc. of CHI'95: ACM Conference on Human Fac-
tors in Computing Systems.

[26] LCS/Telegraphics. The Wintab Developers' Kit,
http://www.pointing.com/WINTAB.HTM, 1999.

[27] Mackay, W. E. Which Interaction Technique Works When?
Floating Palettes, Marking Menus and Toolglasses Support Dif-
ferent Task Strategies. in Proc. International Conference on Ad-
vanced Visual Interfaces (AVI 2002) , ACM Press, pages 203-
208, April, 2002.

[28] Mankoff, J., Hudson, S. and Abowd, G.. Providing integrated
toolkit-level support for ambiguity in recognition-based inter-
faces. In Proc. of CHI’00, ACM Conference on Human Factors
in Computing Systems, pages 368-375, N. Y., April 1-6 2000.

[29] McLoone, H., Hinckley, K. & Cutrell, E. Bimanual Interaction
on the Microsoft Office Keyboard. In Rauterberg,M., Menozzi,
M, & Wesson, J. (Eds.), Human-Computer Interaction INTER-
ACT '03, Zürich, September 2003, pp. 49-56.

[30] Microsoft Corporation, DirectX 9 Graphics Programmers Guide,
Microsoft Press International; ISBN: 0735616531, March 2001.

[31] Microsoft Corporation, Microsoft Active Accessibility SDK 1.2,
Microsoft Corporation 1999.

[32] Moore, M, Mynatt, E. Kennedy, P. and Mankoff, J. Nudge and
Shove: Frequency Thresholding for Navigation in Direct Brain-
Computer Interfaces. In Proc. of CHI 2001 Conference Compan-
ion, Technical Notes March, 2001. pp. 361-362.

[33] Myers, B. A New Model for Handling Input. ACM Transactions
on Information Systems, 8(3) :289-320, july 1990.

[34] Partridge, K. Chatterjee, S. Sazawal, V. Borriello, G. and Want
R. TiltType: accelerometer-supported text entry for very small
devices, the 15th annual ACM symposium on User interface
software and technology, 2002, Paris, France. pp. 201-204.

[35] Perlin, K. Quikwriting: Continuous stylus-based text entry. In
Proc. of UIST '98. ACM, November 1998.

[36] Preece, J., Rogers, Y., Sharp, H., Benyon, D., Holland, S. &
Carey, T. (1994) Human-Computer Interaction. Wokingham,
UK: Addison-Wesley.

[37] Rekimoto, J. Tilting Operations for Small Screen Interfaces.
Proc. of UIST ’96, pp.167-168.

[38] Salber, D., Dey, A., Abowd, G. The Context Toolkit : Aiding the
Development of Context-Enabled Applications. In Proc. of
CHI'99, ACM Conference on Human Factors in Computing Sys-
tems, pages 434-441, New York, may 15-20 1999.

[39] Sense8 Corp. The World Toolkit Manual, Sense8, 1999.
[40] Sun Microsystems Inc. Java Speech API Programmer's Guide, ,

http://java.sun.com/ 1998.
[41] Tyson, H., Scott, H., and Gary, L. Integrating gesture and snap-

ping into a user interface toolkit. In Proc. of UIST’90, pages
112-122. ACM Press, 1990.

[42] Virtools dev. Virtools SA, 2001. http://www.virtools.com/.
[43] Westergaard M. Supporting Multiple Pointing Devices in Micro-

soft Windows. Microsoft Summer Workshop for Faculty and
PhDs. Cambridge, England, September 2002.

[44] Dragicevic, P. and Fekete, J.-D., Input Device Selection and
Interaction Configuration with ICon, Proc. of IHM-HCI
2001,Blandford, A.; Vanderdonckt, J.; Gray, P., (Eds.): People
and Computers XV – Interaction without Frontiers, Lille,
France, Springer Verlag, pp.543-448.

[45] Thevenin, D., Coutaz, J., Plasticity of User Interfaces: Frame-
work and Research Agenda. In Proc. of Interact'99, September 3,
1999. Chapman & Hall, London, pp. 110-117

