

Combining Crossing-Based and Paper-Based
Interaction Paradigms for Dragging and Dropping

Between Overlapping Windows

Pierre Dragicevic
LIIHS-IRIT

Université Paul Sabatier
F-31062 Toulouse Cedex

France
dragice@irit.fr

ABSTRACT
Despite novel interaction techniques proposed for virtual
desktops, common yet challenging tasks remain to be in-
vestigated. Dragging and dropping between overlapping
windows is one of them. The fold-and-drop technique
presented here offers a natural and efficient way of per-
forming those tasks. We show how this technique success-
fully builds upon several interaction paradigms previously
described, while shedding new light on them.

Categories and Subject Descriptors: H.5.2 [User Inter-
faces]: Interaction Styles, Windowing Systems; I.3.6
[Methodologies and Techniques]: Interaction Techniques.

Additional Keywords: Drag-and-drop, crossing-based
interfaces, gestural interaction, paper-based metaphors.

INTRODUCTION
New interaction techniques are regularly being suggested
for improving virtual desktops and making common opera-
tions such as drag-and-drop and window manipulation
easier [2, 8, 10]. Still, not all usability issues have been
addressed. Among the most significant is the task of drag-
ging and dropping between overlapping windows.

Having to drag and drop an object towards a partially or
totally hidden window is a recurring problem while using
virtual desktops. One common example is moving – or
copying – a file from a working directory to another one,
when each directory is displayed in a separate window.
Several strategies may be employed by the user, including:

• Dropping the object on the visible part of the destination
window. This supposes that 1) the destination window
shows enough clues to be properly identified by the user, 2)

the actual target – a given object inside the window or the
window itself – is not totally hidden.

• Rearranging the windows so that both are visible before
performing the drag-and-drop. This requires the user to
find the target window, move it to the front, and then
move/resize one or both windows.

• Using cut-and-paste instead of drag-and-drop. This re-
quires cutting, finding the target window, moving it to
front, then pasting.

Although the last two operations require much more steps
than a single drag-and-drop gesture, there is often no better
alternative especially when the target window is totally
obscured. Other strategies, such as using Window’s Alt-
Tab during drags, are rather intricate. Fortunately, there
seems to be a trend towards making window navigation
during drags easier: Windows XP’s task bar can be crossed
to bring a window to the front whereas a keyboard shortcut
called exposé on Mac OS 10.3 allows temporarily tiling all
windows and selecting one of them [10]. However none of
these techniques is wholly satisfactory because they require
switching back and forth between two different representa-
tions of the same window set. The biggest issue is that
compact window visualizations do not always show suffi-
cient information for the target window to be recognizable
while they are too small to contain numerous drop targets.

This paper describes a new interaction technique for ad-
dressing this problem. The technique, called “fold-and-
drop”, uses a natural metaphor that makes it possible to
seamlessly drag and drop objects from a window to any
window underneath.

THE FOLD-AND-DROP TECHNIQUE
Using the fold-and-drop technique consists in “leafing
through” windows while holding the dragged object, until
the target window is found. More precisely, the object is
dragged and dropped in the usual way, except that “folding
interactions” can be performed with windows as long as the
mouse button remains pressed. There are several types of
folding interactions:

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
UIST ’04, October 24–27, 2004, Santa Fe, New Mexico, USA.
Copyright © 2004 ACM 1-58113-957-8/04/0010. . . $5.00.

Leaving Windows. Each time the mouse leaves a window,
a small fold named transient fold appears at the exit area
during a brief period of time, then springs back. This ani-
mation is illustrated in the Figure 1.

Figure 1: A small fold briefly appears as the mouse

leaves the window.

Confirming and Pushing Folds. During the short time a
transient fold remains visible it can be crossed back with
the mouse to be confirmed, in which case it will remain
folded. Conversely, no confirmation occurs if the mouse
continues in the same direction or if it returns back after the
transient fold has disappeared.

Figure 2: Pushing a fold.

Once confirmed, a fold can be pushed by the mouse in
order to be enlarged and reveal windows behind. This can
immediately follow the confirmation gesture, as shown on
Figure 2. The way the fold is pushed also has an effect on
the orientation it takes.

Discarding Windows. When a fold keeps being pushed so
that only a small part of the pushed window content re-
mains visible, the window fades away and eventually dis-
appears. This can also be done with a single long gesture
(see Figure 3).

Figure 3: Discarding a window with a single gesture.

Unfolding. Moving around the fold and pushing it from
the inside to the outside will unfold it entirely. This interac-
tion is illustrated in the Figure 4.

Figure 4: Going around a fold and pushing it from

inside cancels it.

Manipulating Multiple Folds. Several folds can coexist
on separate windows and be manipulated successively.
Multiple folds can also be manipulated at the same time, as
illustrated on the right side of Figure 5: folding a window
will fold all the windows over it, and unfolding a window
will unfold all windows underneath.

Back to the initial state. After the mouse button has been
released or the drag-and-drop has been cancelled (e.g. by a
right-click), all windows spring back to their normal state.
In case a command such as a file copy has been issued, a
short pause is made beforehand to make its results apparent.

A typical scenario of use for the fold-and-drop technique
could be the following: an icon is dragged outside a win-
dow, which is folded enough so that windows below can be
identified. If the target window is not among them, another
window is folded, and so on. Backtracking is possible by
unfolding previously folded windows.

Such manipulations can follow one another at a high pace,
especially if the user has some idea on the location of the
target window. For example, if the user knows it is situated
two windows below, he/she can move the mouse two times
back and forth without having to uncover the window in-
between. Multiple lined-up windows can be leafed through
in this way (Figure 5 on the next page).

DISCUSSION
The fold-and-drop technique relates to several interaction
paradigms previously described in the literature, namely
crossing-based tasks, gestural interaction and paper-based
metaphors. In this section, we briefly recall those concepts,
motivate their use and discuss each of them in the light of
the fold-and-drop technique.

Crossing-based Tasks
To enrich modern interfaces that almost exclusively rely on
pointing, an alternative interaction paradigm has recently
been proposed based on goal-crossing tasks [1]. Those
tasks involve moving the mouse beyond the boundary of
graphical objects for triggering actions. The authors briefly
suggest the possibility for crossing a boundary back and
forth (double-crossing) or more, in order to increase the
command vocabulary. The technique we described, e.g.
folding a window by double-crossing its border while drag-
ging, is a perfect application of double-crossing. Here are
two reasons:

• Because pointing-based tasks are not performable during
the time of a drag (unless using other buttons), crossing-
based tasks become quite beneficial in this context. One
rudimentary example is automated scrolling in some text
editors.
• There is a close mapping between the two-dimensional
double-crossing task and the tri-dimensional task of sliding
an object behind another one. There is also a natural rela-
tionship between multiple crossings performed on lined-up
boundaries, and the everyday task of leafing through.

Fold-and-drop additionally extends the crossing-based
paradigm with two interesting concepts:

• Timed double-crossing. Distinguishing between slow and
fast double-crossing makes it possible to cross boundaries
without triggering any action. Timed double-crossing can
be seen as a crossing-based equivalent to double-clicking.
As with double-click, it is likely that timing should be cus-
tomizable to adapt to different user skills. Our technique
also shows that with appropriate animated feedback, timing
can be made visible to the user.
• Pushing boundaries. After being confirmed, a fold
boundary continuously adjusts its location each time it is
crossed, as if it were pushed. Pushing can also be seen as
crossing-based dragging.

Gestural interaction
A parallel has already been established between double or
multiple crossing and gesturing [1]. In fold-and-drop, fast
double-crossing is obviously perceived as a gesture. Dou-
ble-crossing gestures are however different from traditional
ones as no classification technique is needed and ambiguity
is not an important issue. Moreover, the gestures used in
fold-and-drop are self-explanatory and only involve induc-
tive learning. The animated fold feedback, which helps the
novice understand the underlying metaphor, is not needed
any more as faster gestures are used. This is a feature fold-

and-drop shares with techniques such as Marking Menus
[5, 7]. Another interesting characteristic of fold-and-drop is
that it combines gestures with direct manipulation, as it
interprets the mouse trajectory during drag-and-drops.
From this point of view, fold-and-drop adds a new and
convincing example to a family of hybrid techniques some-
times called “ecological gestures” [6, 7].

We also believe that the type of gesture we exploit is rarely
made during regular drag-and-drops, and thus should sel-
dom be initiated by mistake. In an exploratory study in
which we monitored the activity of several users, we dis-
covered that “exit window / re-enter window” gestures do
occur during mouse drags ; however, we also observed that
they happen most of the time when moving scrollbars lo-
cated near the window border (e.g., in an Internet browser
or a text editor). We believe that those gestures occur much
less often when dragging droppable objects, although this
still has to be confirmed by user experiments.

Paper-Based Window Metaphors
The metaphor used in drag-and-fold directly borrows from
Beaudouin-Lafon’s peeling-back technique [3] (see also [4]
and [9]). Using this technique the user can drag a corner of
a window to fold it then activate a window underneath
before the folded window springs back. We use the same
graphical effect with some aesthetical enhancements such
as shadows. The main differences reside in the metaphor
and the interaction techniques used. For example, we push
the fold instead of dragging its corner. The ability to fold
multiple windows at the same time, a central feature of our
technique, also required a significant extension of the origi-
nal paradigm.

There are two reasons why we use folding instead of simply
discarding windows, for example. First, a window does not
need to be completely hidden – or minimized – when look-
ing for a window behind. Adjusting its graphical attributes

Figure 5: Leafing through windows while holding the dragged object.

instead (e.g., location, size, shape or transparency) keeps
the window and thus part of the context visible; it also
facilitates backtracking in case the window needs to be
displayed again. In our case, one main advantage of fold-
ing compared to other graphical effects is that it blends
particularly well with the double-crossing technique and
dramatically adds to the metaphor.

IMPLEMENTATION
We implemented the fold-and-drop technique using Java
Swing’s internal frames and a simulated file manager. We
briefly describe how we display folded windows and handle
user manipulation. We also raise some implementation
issues.

• Displaying folded windows. Using Swing, non-
rectangular internal frames are easily obtained by subclass-
ing their paint method and clipping their graphics. The
contains method also has to be redefined for mouse
events to be dispatched through holes. Our frames addi-
tionally install a shared layered pane that handles fold dis-
play. For details on how to compute fold shapes see [3].
We add a scale transform in the direction perpendicular to
the fold line in order to distinguish the folded corner from
its shadow. Shadow shapes are ANDed into a unique area
before being displayed with a translucent color. The paint-
ing order is the following: the clipped frames, the shadow
area then the folded corners in reverse order with respect to
frames.

Figure 6: Folds computation after a mouse move.
The grayed areas indicate the window side.

• User manipulation. We could not use Swing’s mouse
enter/leave events for handling user input because they do
not carry enough information (we need the previous mouse
location) and inadequately handle crossing of multiple
boundaries (e.g. in Figure 6, A does not receive the “enter”
event). Because Swing’s event model is complex to extend
we had to do it the “dirty way”, i.e. by giving all responsi-
bilities to the layered pane and making him listen to all
mouse events. The underling mechanism is nevertheless
the same: when the mouse moves from P to P’, folds inter-
secting [P, P’] are computed. The fold whose intersection I
is the closest from P (fold A in Figure 6) is translated by IP’
plus a small delta so that P’ remains on the same side. The
fold is also slightly rotated towards the direction perpen-
dicular to (P, P’). After this, other folds are moved so that
geometrical coherency constraints are verified i.e. a fold
never intersects an upper window.

CONCLUSION
This paper described fold-and-drop, a new interaction tech-
nique for seamlessly dragging and dropping objects be-
tween overlapping windows. It also discussed three known
interaction paradigms related to fold-and-drop and briefly
described its implementation. We believe this technique
can fill an important need in today’s desktops. It also
shows novel interaction techniques can still be introduced
to improve the desktop but there is a huge need for more
flexibility in GUI Toolkits and window managers to im-
plement them.

The Java demo of the fold-and-drop technique can be
downloaded with other related material at:
http://liihs.irit.fr/dragice/foldndrop

ACKNOWLEDGMENTS
Many thanks to Jean-Daniel Fekete for his ideas and his
helpful comments on this paper, to Sandra Steere for re-
viewing the English and to David Navarre for his geometry
formula.

REFERENCES
1. Accot, J. and Zhai, S., More than dotting the i's - founda-

tions for crossing-based interfaces. In Proc. of CHI 2002.
pp. 73-80.

2. Baudisch, P., et al. Drag-and-Pop and Drag-and-Pick:
Techniques for Accessing Remote Screen Content on
Touch- and Pen-operated Systems. In Proc. of Interact
2003. pp. 57-64.

3. Beaudouin-Lafon, M. Novel interaction techniques for
overlapping windows. In Proc. of UIST 2001. pp. 153-154.

4. Denoue L., Nelson L., Churchill E.F. A fast, interactive 3D
paper-flier metaphor for digital bulletin boards. In Proc. Of
UIST 2003. pp. 169-172.

5. Kurtenbach, G., Sellen, A. and Buxton, W. An Empirical
Evaluation of Some Articulatory and Cognitive Aspects of
Marking Menus. Human-Computer Interaction 8, 1, 1993,
pp. 1-23.

6. Mertz, C., Vinot, J.L. and Etienne, D. Entre interaction
directe et reconnaissance d'écriture : les gestes écologi-
ques. (between direct interaction and writing recognition:
ecological gestures). In Proc. of ergo-IHM2000, Biarritz,
France, pp 145-152.

7. Pook, S., Lecolinet, E., Vaysseix, G., Barillot, E. Control
Menus: Execution and Control in a Single Interactor. In
Proc. of CHI 2000. pp. 263-264.

8. Rekimoto, J. Pick-and-Drop: A Direct Manipulation Tech-
nique for Multiple Computer Environments. In Proc. of
UIST 97. pp. 31-39.

9. Roussel, N. Ametista: a mini-toolkit for exploring new
window management techniques. In Proc. of CLIHC 2003,
Latin American Conference on Human-Computer Interac-
tion, ACM Press, August 2003, pp. 117-124.

10. Tomitsch, M. Trends and Evolution of Window Interfaces.
Diploma thesis, University of Technology, Vienna, De-
cember 2003, 132 pages.

A

B

P

P’

I

