

Page 1 of 10

Video Browsing by Direct Manipulation

Pierre Dragicevic, Gonzalo Ramos, Jacobo Bibliowicz,
Derek Nowrouzezahrai, Ravin Balakrishnan, Karan Singh

Department of Computer Science
University of Toronto
www.dgp.toronto.edu

{dragice, bonzo, jacky, derek, ravin, karan} @ dgp.toronto.edu

Figure 1. The Direct Manipulation Video Player used to scrutinize a baseball pitcher’s motion: (a) pressing on the
pitcher’s shoulder displays its estimated trajectory ; (b) the user moves forward in the timeline by dragging the shoulder;
(c) the user slowly goes back by dragging the pitcher’s wrist. The size of the pointer has been exaggerated.

ABSTRACT
We present a novel method for browsing videos by directly
dragging video content. This method brings the benefits of
direct manipulation to an activity which is typically experi-
enced via an indirect linear time slider. We show how di-
rect manipulation can be supported in a video player by: 1)
automatically extracting motions from video files using
well-established computer vision methods; 2) using a tech-
nique called relative flow dragging that enables directly
controlling the playback of these motions within the time-
line of the motion rather than the overall video timeline.
ACM Classification: H5.2 [Information interfaces and
presentation]: User Interfaces. - Graphical user interfaces.
General terms: Algorithms, Design, Human Factors

Keywords: video browsing, direct manipulation.

INTRODUCTION
Despite the widespread adoption and clear benefits [4, 13,
25] of direct manipulation, it has not been adopted consis-
tently across all computer applications. There are still a
number of tasks, such as browsing video, that could benefit
from better application of direct manipulation principles.
Most video players include a seeker bar that provides linear
access to the video timeline. While this is a useful tool for
interacting with videos, like many GUI widgets, it is no
more than an intermediary between a user and the true

object to be manipulated [4]. Often this object is in the
video image itself, and it might be beneficial for users to be
able to directly manipulate it. For example, a coach analyz-
ing limb motions of a baseball pitcher might occasionally
want to directly drag the pitcher’s body as an alternative
way to travel through the video timeline (Figure 1).
Video browsing through direct manipulation can provide
the user with a fulfilling sense of control, similar to what
they experience when controlling a video game character
[13]. It can also facilitate tasks that focus on local and
accurate browsing. To enable direct manipulation in a
video, each pixel of a frame would have a corresponding
“local seeker” that provides control over the object’s mo-
tion. This control is achieved through a one-to-one map-
ping between the stimulus and the response [7], which can
significantly facilitate tasks occurring in image space.
Along with its potential benefits, direct manipulation of
video content presents several interesting research chal-
lenges. Firstly, one needs be able to infer or detect the
underlying motion paths that are present in a video. There
are numerous approaches one could use to address this
issue and at first glance it is not obvious which is best
suited to the task. Secondly, dragging video content is
fundamentally different from dragging traditional GUI
entities since the content to be manipulated is constrained
to motions determined by that content itself rather than a
predefined widget. Furthermore, these motions can be more
complex than those of traditional interface widgets. Video
scenes can involve non-rigid deformations and may include
moving backgrounds which, in turn, affects the way a user
perceives object motion. In this paper, we explore solutions
to these challenges.

Submitted to UIST'07 - Unpublished document

Page 2 of 10

RELATIVE FLOW DRAGGING
Our video navigation interface uses a new technique we
call relative flow dragging. Relative flow dragging is a
general direct manipulation solution to the control of arbi-
trary motions that are limited to one degree of freedom. It
decomposes complex motions into individual trajectories in
a way that accounts for the phenomenon of induced motion
(i.e., illusions of motion produced by dynamic back-
grounds). We present the idea of relative flow dragging in
a general context, describe how it relates to the concept of
direct manipulation and illustrate its benefits.

Maximizing Directness
Hutchins et al. [13] proposed that directness depends on
several factors, such as how responsive and unobtrusive a
system is, and how closely the input language of the user
interface matches its output language. For example, drag-
ging an object is highly direct because the output it gener-
ates (an object moving on the screen) is very similar to the
input (the user’s hand moving).
Michel Beaudouin-Lafon [4] categorized common sources
of indirectness in interfaces. These include spatial and/or
temporal separation between the user’s action and the sys-
tem response (high degree of indirection) and dissimilari-
ties between the action and the response (low degree of
compatibility). For example, panning with scrollbars suf-
fers from these two types of indirectness, as opposed to
directly dragging the document. A third type of indirect-
ness involves tasks that require more degrees of freedom
than provided by the user’s input (low degree of integra-
tion).

Matching Gestures with Motions
Designing an interaction technique in general involves
deciding how the user’s input will be interpreted into
changes in the system. Direct manipulation teaches us that
such a decision should be made according to the character-
istics of the system’s outputs, rather than the internals of
the system. For example, consider an internal variable
whose variations cause a motion on screen (e.g., time
causes a clock’s hand to rotate). Regardless of the nature of
this variable, the most direct visual way for the user to
control it is by specifying the expected motion (e.g., drag-
ging the clock’s hand).
We propose that designing for direct manipulation involves
matching user’s gestures with the observed visual motion.
This is straightforward when the possible gestures allow us
to express all possible visual movements – i.e., when the
gesture space matches the motion space. For example,
using a 2D device to pan a map. However,
incompatibilities between motion spaces and gesture spaces
are common. Adjusting the input device to the task [7] is
an effective but often impractical solution. As a result, a
number of techniques have been designed to map a limited
2D gestural language to a wide range of visual motions
while preserving an illusion of direct manipulation. Exam-
ples are scaling objects, rotating objects [4] and performing
3D manipulations [27] using a mouse.

The control of high-dimensional motion spaces has long
been recognized as an important problem, especially in the
field of 3D interaction. In comparison, little attention has
been paid to the control of low-dimensional spaces.
Relative flow dragging, our general solution to the control
of motions with one degree of freedom, is related to three
other families of direct manipulation techniques: curvilin-
ear dragging, flow dragging and relative dragging.

Figure 2: Forms of constrained direct manipulation
techniques: (a) curvilinear dragging; (b) flow drag-
ging; (c) flow dragging with a moving background;
(d) relative flow dragging takes perceived motion
into account.

Curvilinear Dragging
Curvilinear dragging consists of moving a point con-
strained along a 2D curve using a 2D pointing device (Fig-
ure 2a). Examples of curvilinear dragging techniques can
be found in current user interfaces, although they mostly
involve straight lines. For example, scrollbars, sliders and
menus project 2D mouse movements onto a 1D axis [4].
Cascading menus and flow menus are not direct manipula-
tion techniques per se, but involve steering, an action simi-
lar to that of following a curve [1, 11].
Examples of curvilinear dragging on arbitrary curves also
exist. For example, the 3D modeling software Maya allows
users to move contact points along 3D curves [2]. The
Cabri-Géomètre mathematics learning environment [12]
allows the exploration of geometric figures by dragging
construction points that can be constrained to curves. Ngo
et al.’s [19] system allows users to animate parameterized
graphics by dragging objects along their trajectories.
Flow Dragging
Flow dragging is a generalization of curvilinear dragging.
It involves direct manipulation of continuous arbitrary
motions having only one degree of freedom. The term "ar-
bitrary" means that the motions are not limited to transla-
tions, but can involve any type of visual transformation or
deformation, such as a bouncing rubber ball. The term "one
degree of freedom" does not mean that the motion occurs
in 1D space, but that it can be parameterized with a unique
variable, such as time.
Implementing flow dragging amounts to implementing a
curvilinear dragging technique on a family of curves: since
the whole motion has only one degree of freedom, each
point of the object has a unique trajectory (see Figure 2b).
Depending on how flow dragging is implemented, this
trajectory can be dynamically replaced by nearby trajecto-
ries or can remain the same throughout the drag operation.

Submitted to UIST'07 - Unpublished document

Page 3 of 10

Relative Dragging
We presented direct manipulation design as a problem of
matching gestures with motions. However, our experience
with video browsing suggests that gestures should be
matched with perceived motion rather than real motion.
The apparent motion of an object is heavily influenced by
the motion of its surroundings, a phenomenon known as
induced motion, or the Duncker illusion [36]. Research
suggests that induced motion also affects motor tasks [23].
Although induced motion is a complex phenomenon [21],
it suggests that people perceive relative rather than absolute
motion. Direct manipulation techniques that focus on the
control of relative motion will be called relative dragging
techniques (Figure 2c,d). Simple examples of relative drag-
ging techniques are “automatic scrolling” techniques. They
involve combining pointer and background motion so that
their relative motion matches the user’s hand movement. A
particular case is keeping the pointer or object of interest
still and moving the background in the opposite direction.
Such an approach is used in Microsoft’s accessibility mag-
nifier to give the user access to a larger workspace. It is
also very common in 2D action games.
Flow dragging is best implemented using a relative drag-
ging approach, because flows are likely to produce induced
motion. For example, let us suppose that the deformation of
the rubber ball occurs with a background motion (Figure
2c). Curvilinear dragging on actual trajectories might be
difficult because they are very different from what the user
actually perceives. Dragging is facilitated if background
motion is subtracted from the actual trajectories (Figure
2d). We call this method relative flow dragging.

Challenges
The design and implementation of relative flow dragging
faces two key challenges. The first difficulty is the extrac-
tion of visual trajectories, as well as the computation of
relative motions. We describe how this can be done with
acceptable accuracy on video content. The second issue is
support for curvilinear dragging: although anecdotal exam-
ples of curvilinear dragging exist, they do not behave well
on arbitrary curves. This problem will also be addressed.
A more general challenge of relative flow dragging is to
understand the situations in which it might be beneficial.
Although few examples exist, we believe that it deserves to
be more widely supported. For example, consider an in-
formation visualization application supporting dynamic
queries. Manipulating a slider will typically change the
parameters of the query, which in turn moves the data-
points of a scatter-plot. Supporting relative flow dragging
on the scatter-plot could nicely complement the slider tech-
nique.

THE DIRECT MANIPULATION VIDEO PLAYER
We implemented and tested relative flow dragging in an
interactive video player prototype that we call DimP (for
Direct manipulation Player)1. In addition to providing all

1 Dimp is available at www.dgp.toronto.edu/~dragice/dimp

the standard controls of a traditional movie player (Figure
3b), DimP allows users to go back and forth through the
video’s timeline by directly manipulating the video content.
DimP supports automatic extraction of motion trajectories.
When a video is loaded into DimP, it first checks if it is
already accompanied with motion information. If it is not,
this information is automatically extracted then saved as a
separate file associated with the video. We believe that it is
reasonable to expect motion information to be created and
potentially authored off-line. The loaded video is fully
uncompressed, so that we have immediate access to the
bitmap corresponding to each frame.
Figures 1, 3 and 4 illustrate DimP in action. Via three sce-
narios, we illustrate how DimP provides a richer way to
navigate the video stream as well as transcend some inher-
ent limitations of the traditional seeker bar.
Scenario 1: a surveillance video shows a car that has been
parked in a particular spot all night. We might want to
rewind to the point in the video where the car is in the
process of parking. On a traditional video player we have
to drag the seeker bar’s handle until we visually detect the
frame of interest. With DimP, we can click and drag the
parked car (Figure 3a) directly out of the parking spot. This
action immediately takes us to a point in the video just
moments away from when the car has finishing parking
(Figure 3b). From that point onwards (or backwards) we
can use the traditional seeker bar to find out, for example,
who is leaving the car (Figure 3c).

Figure 3: DimP can help find a particular event in a
video. a) The user clicks on a parked car, its trajec-
tory is shown. b) The user “detaches” the car from
its parking location, which takes the player back to
the point where the car was parking. c) The user
browses through the temporal vicinity of this mo-
ment to find the person that is exiting the car.

Submitted to UIST'07 - Unpublished document

Page 4 of 10

Figure 4: Background stabilization in Dimp, on a traffic scene involving a camera pan upwards.
a) The actual motion of a car on the screen, hard to perceive by users. b) Background stabilization presents us-
ers with a motion path close to the car’s perceived motion. c) When the car is dragged, background stabilization
shifts the video frames and leaves a trail of previously displayed frames.

Scenario 2: a video of a scene on a busy street, where
many cars and people are buzzing about, is being watched
(Figure 4a). Cars in the scene regularly accelerate, slow
down or stop. Let us suppose that we wish to advance
frames so that a particular car arrives at a particular loca-
tion. This is difficult to achieve using the seeker bar, since
not only is the mapping between the bar’s handle and the
car’s movement unknown to the user, but it is also not
linear. A smooth controlled dragging on the seeker bar can
result in an erratic non-uniform movement of the car. This
disparity stems from the indirectness of the seeker bar and
is addressed by letting users simply drag the car over the
video scene at the rate they see fit.
Scenario 3: DimP can be useful in scenarios where a user
is interested in analyzing a particular video scene. For
example a sports coach is interested in studying the style of
an athlete pitching a baseball or a spring board diver per-
forming a jump. Using direct manipulation, the coach has
access to the many complicated movements involved in
throwing a ball or twisting ones body in mid-air. We can
imagine that the coach may switch his/her attention be-
tween different key points of interest in a scene, such as the
point where a ball leaves the pitcher’s hand, when a diver
is about to hit the water or when a particular muscle group
is engaged. All these operations can be performed by
means of direct manipulation in the video view-port, with-
out having to resort to the seeker bar (Figure 1). Hint paths
are also useful in this scenario because motion trails are
known to help animation and motion analysis [32].

Trajectory Visualization
One of the biggest challenges we faced in the design of the
visual feedback in DimP is the trade-off between providing
the illusion of direct manipulation and guiding users when
they stray away from a particular motion path. It is impor-
tant to provide a trajectory visualization that is unobtrusive
and at the same time helpful when necessary.

Preview
We change the appearance of the pointer’s cursor from an
arrow to the shape of a hand whenever the pointer is hover-
ing above a region of the video frame where the motion
curve is significant enough. Users can then engage in direct
manipulation by simply clicking and dragging over a
video’s frame. As a user clicks over a region in the video
frame where movement occurs, the system displays a subtle
hint path corresponding to the estimated motion. Our de-
signs are deliberately subtle and as visually unobtrusive as
possible. The video frame remains fully visible while at the
same time we reveal the general motion occurring under
the point the user clicked on (Figures 1, 3, 4).
Emphasizing
Since objects in a video scene follow prescribed trajecto-
ries, users cannot drag them on arbitrary paths. We show
this potential mismatch by emphasizing the hint path as the
users’ dragging path diverges from an object’s motion. The
farther the divergence, the more opaque the displayed hint
path becomes (Figure 5). Finally, if a user drags the pointer
past a predetermined threshold distance from the hint path,
we play a “snapping” sound and the current instance of
direct manipulation is terminated.

Figure 5: As the pointer moves away from the mo-
tion curve, the visual representation of the curve
changes from (a) subtle to (b) emphasized.

Submitted to UIST'07 - Unpublished document

Page 5 of 10

Position Feedback
We display a red cursor over the hint path that indicates the
position over the motion curve corresponding to the
pointer’s location. If the pointer perfectly follows the path,
the cursor is located under the pointer. As the pointer’s
path diverges from the object’s motion path, the cursor
provides extra feedback as to the effects of the dragging
operation (Figure 5b). The cursor additionally facilitates
video navigation with sub-frame accuracy, which is useful
in editing tasks involving videos with soundtracks.

Background Stabilization
Because of the phenomenon of induced motion, it is neces-
sary to provide control over relative (perceived) motions
rather than over real motions. Following a relative dragging
approach, DimP computes and extracts background motion
information and subtracts it from all the trajectories.
One approach to supporting relative dragging is to disen-
gage the pointer’s motion from the input device motion.
For example, dragging an object might not move the ob-
ject, yet it appears to move because of a moving back-
ground. In this case, moving the input device does not
move the cursor, only the video. Such an approach is only
possible with relative pointing devices such as a mouse.
Instead of the previous solution, we use background stabi-
lization, an approach that works for both relative and abso-
lute pointing devices. Figure 4 illustrates an example where
background stabilization helps to match a motion curve to
an object’s perceived motion. People watching a video of
cars going up a street will see cars going up the street even
under the presence of upward camera panning motions.
Figure 4a shows how an upwards camera pan can make a
car’s motion in the video a downwards one, even though
the car moves up the street. It is difficult for users to per-
ceive or reproduce this absolute motion. Figure 4b shows
the result of subtracting the global motion from the real
motion: an upwards path closer to the car’s perceived mo-
tion.
Background stabilization shifts video frames within the
player’s window as a user drags a particular object. These
shifts are intended to match an object’s actual motion with
the user’s perceived motion. As video frames shift inside
the player’s window as a result of the stabilization process,
they leave a trail of blurred grayscale images which aid in
putting the currently displayed video frame in context with
the video scene (Figure 4c). To a certain degree, this trail
of images forms a structure close to a stitched panorama or
video mosaic [10, 14]. Once the direct manipulation ends,
the current frame springs back with a smooth animation to
fill the player’s window frame.

TRAJECTORY EXTRACTION FROM VIDEOS
Supporting relative flow dragging in a video player re-
quires knowledge of the motions occurring in the video –
i.e., having a function that maps any point in any video
frame to a curve representing its trajectory over time.
We considered three approaches for obtaining the motion
information:

Manual Annotation: in order to collect initial user reac-
tions, we first prototyped the idea of relative flow dragging
in a Java prototype requiring manual annotation of videos.
Points of interests were positioned and moved across
frames. Manual annotation is a fairly reasonable approach
in the context of multimedia authoring and can be comple-
mented with automatic techniques. However, fully auto-
matic solutions are needed for video consumers to be able
to experience direct manipulation on arbitrary video files.
Metadata Extraction: video formats such as MPEG already
contain motion information used for the purpose of decod-
ing [30, 34]. We did not investigate this approach because
we wanted to test relative flow dragging with reliable mo-
tions first, as a proof of concept. Still, this strategy is worth
exploring in future work.
Automatic Estimation: motions can be estimated with ac-
ceptable accuracy using video processing and computer
vision techniques. This is the approach we used in DimP.

Computer Vision Approaches
Automatically estimating motions from image sequences is
a classical problem in computer vision with a number of
applications. Given the considerable amount of research in
this area [3, 15, 26, 28, 30, 34, 35], our goal is not to pro-
pose a new method, but rather to use well-established vi-
sion techniques in order to demonstrate the feasibility of
built-in support for the direct manipulation of video.
We can arbitrarily group motion estimation problems into
two categories: object tracking and optical flow.
Object Tracking: tracking involves following the motion of
one or several objects of interest over a video sequence.
Such objects are supposed to have stable salient features,
which are sometimes known in advance. Applications
include motion capture and video surveillance [35].
Optical Flow: optical flow computation consists of estimat-
ing pixel velocities between adjacent video frames, without
enforcing temporal consistencies. Applications include
video compression, 3D reconstruction and robot servo
control [3].
Some problems, like ours, can be tackled using either of
these approaches. Tracking algorithms are efficient at fol-
lowing objects over long periods of time, but they assume
that such objects are known a priori. Automatically extract-
ing them is a complex process [15]. Optical flow methods
do not require such knowledge and are able to keep track
of non-rigid motions. However, optical flow methods can
have serious problems with temporal discontinuities such
as occlusion between objects and scene cuts.
Given the tradeoffs between the two approaches, we be-
lieve that optical flow is worth considering as a first step,
because it spares us from making any assumptions about
the structure of the objects present in the video scenes. To
achieve a minimal robustness, we opted for a solution in
which we generate a feature flow between pairs of video
frames.

Submitted to UIST'07 - Unpublished document

Page 6 of 10

Extraction of Feature Flows
Traditional optical flow estimation methods that use varia-
tions in pixel intensities to generate dense motion fields
suffer from a number of difficulties [3]. When coarse mo-
tion estimation is sufficient, one can obtain more reliable
results by using a feature-based optical flow estimation
approach [17]. In a feature-based optical flow, one tracks
the variations of feature points between frames in order to
estimate pixel motion.
Feature detection is an image operation that detects opti-
cally interesting parts of an image, such as edges or cor-
ners. Robust features can be used to reliably match pairs of
images, even when they differ in aspects such as illumina-
tion or point of view. We chose the SIFT approach (Scale-
Invariant Feature Transform) [17]. SIFT is a robust feature
extraction method already available in several libraries and
has been used successfully in applications ranging from
panorama creation tools [20], reconstruction of 3D scenes
[29], and video tracking [28]. In addition to the above,
SIFT libraries also provide methods for feature matching.
In DimP, we use Nowozin’s panorama stitching library
[20], which includes a C# implementation of the SIFT
detection and matching algorithms [17]. We made minor
modifications. For example, we increased the | D(x^) |
threshold from 0.03 to 0.5 in order to reduce the detector’s
sensitivity to low-contrast video compression artifacts.
The feature flow between each pair of adjacent frames is
computed by detecting and matching SIFT feature points
between these two frames. Each pair of matched feature
points gives a motion vector. Unmatched features are dis-
carded. A feature flow is marked “unknown” if the total
number of matched features is zero. Once feature flows are
computed for the whole video, motion trajectories can be
generated on-the-fly.

Construction of Motion trajectories
Optical flow is deduced from feature flow using nearest-
neighbor interpolation. In other words, we assume that the
displacement of a pixel is the displacement of the nearest
feature point. This method is conservative, since local
motions are typically tagged with few features (sometimes
one or two) and their immediate surroundings are devoid of
features.
The motion trajectory going through a given pixel of a
given video frame is then built by adding up flows forward
and backwards in time. There is very little cumulative error
due to rounding because the location of SIFT feature points
has sub-pixel accuracy. The process of building the motion
trajectory stops as soon as an unknown flow is encoun-
tered. Apart from the first and last frame, this happens
almost exclusively during scene cuts.
Finally, we tag each of the vertices on a trajectory curve
with the frame number it corresponds to. Given any point
on the curve, the corresponding floating-point video frame
number is obtained by linear interpolation.

Extraction of Background Motion
The task of detecting the background or dominant motions
of any video sequence can be formulated as a clustering
problem. The goal is to segment feature motion vectors into
clusters that map, preferably in a one-to-one manner, to
coherent areas in screen-space and also potentially in time.
We implemented a simple, greedy screen-space binary
partitioning scheme to find the most dense motion region in
the space of feature motions. This algorithm yields the
dominant or “most representative” feature displacement on
a given pair of frames, which is identified with background
translation and subtracted from the feature flow.
Our binary partitioning scheme has shown acceptable re-
sults from the user perspective and has the advantage of
being computationally cheap. More advanced tools such as
K-means or Mean-Shift clustering algorithms can be used
to detect multiple coherent motions and refine the computa-
tion of relative motion [8].

Limits of the Method
The quality of our method, i.e., how well the generated
trajectories match users’ expectations, has been assessed
through informal testing sessions. Our method yields very
good results on high-quality videos involving large con-
tinuous motions. However, there remains some limitations:
Speed: a standard, non-optimized feature extraction and
matching can be time consuming. While our implementa-
tion can take between five to ten seconds of processing
time per frame on a regular computer, research suggests
that feature detection and matching can be done faster, if
not in real-time [17, 28]. We are planning to use such ac-
celerated implementations in the future.
Sensitivity: in order to keep computation times acceptable
and bounded, we sub-sample video frames to 128 x 128
grayscale images before processing. As a result, motions of
small objects are not detected. Faster feature extraction
implementations could operate on higher resolution im-
ages, thus improving sensitivity.
Discontinuous Motions: our implementation does not “re-
member” objects which have been briefly occluded or
moved outside the camera field. The motion of a given
object can get merged with another object’s motion. Such
issues are intrinsic to the feature flow paradigm, and can be
partly addressed using tracking techniques [35].
Induced Motion: in addition to the imperfections of its
background motion detection, our method makes several
simplifying assumptions about induced motion: it does not
detect multiple coherent motions, nor does it account for
non-translational induced motions [21].
The motion trajectory curves we produce hold all the in-
formation we need for the direct manipulation of video.
With this information, we can reflect a point’s motion over
a curve back into changes on the video frame number. In
the next section, we elaborate on how users control these
curvilinear motions using 2D mouse movements.

Submitted to UIST'07 - Unpublished document

Page 7 of 10

CURVILINEAR DRAGGING IMPLEMENTATION
Supporting flow dragging mostly requires supporting cur-
vilinear dragging on multiple curves. One minor issue is
the dynamic transition between trajectories; we will not
address it and only consider the case where trajectories
remain fixed once they have been invoked by a mouse
press. When a relative flow dragging approach is neces-
sary, we will additionally suppose that background motion
has already been subtracted from trajectory curves.

Requirements and Goals
Curvilinear dragging consists of moving a point along a 2D
curve using a 2D input device. While there are different
ways of mapping dragging actions to curvilinear motions,
and the “correct” behavior for a curvilinear dragging
method is subjective based on users' opinions and expecta-
tions, it is possible to postulate a set of basic requirements:
Multi-Scale: users should be able to perform both slow/fine
dragging as well as fast/coarse dragging. If a curve has
high and low-frequency components, the user should be
able to explore it locally, but also rapidly transition to other
regions of the curve (Figure 6a).
Arc-Length Continuity: it is desirable to favor continuity in
terms of arc-length variation. For example, if the user fol-
lows a loop and goes through a part in which the curve is
intersecting itself, the algorithm should not jump to a dif-
ferent part of the curve (Figure 6b).
Directional Continuity: variations that preserve the arc-
length direction of motion are favorable. For example, if
the user follows a cusp, the algorithm should not go back to
the previously explored region (Figure 6c). This allows for
navigating through a whole curve with a single gesture,
even when the curve involves U-turns.
Proximity: the method should follow direct manipulation
principles by minimizing spatial indirection [4]. For exam-
ple, when the pointer is still, the offset between its current
position and the current point location on the curve should
be minimized.
Responsiveness: according to direct manipulation princi-
ples, the method should also minimize temporal indirection
[4]. This means that pointer motions should rapidly reflect
on the curve, without noticeable delays in the interaction.

Figure 6: Three requirements for a curvilinear drag-
ging technique: multi-scale navigation (a), arc-
length continuity (b) and directional continuity (c).

Curvilinear Dragging Solutions
Current applications use simple solutions to the problem of
curvilinear dragging. While algorithmically simple, these
solutions do not fully satisfy the requirements we set for
curvilinear dragging. Projecting the pointer's location onto
a linear trajectory, for example, is an effective method of
dragging a point on a line, but it can be only applied to
straight motions, e.g., sliders.
One could build a dragging solution based on steering [1]
by constraining the pointer’s motion to a tunnel built
around the curve. This steering method would support fine
dragging and, to some extent, arc-length continuity and
responsiveness. However, because users cannot deviate
from the curve, support for proximity and coarse explora-
tion is limited. Directional continuity is also unachievable.
Computing the closest point to the pointer's location is
another solution for mapping pointer locations onto non-
straight curves. The closest point approach meets the prox-
imity and responsiveness criteria, however it does not meet
the arc-length continuity and directional continuity criteria.
While this method supports coarse dragging, it does not
allow for smooth fine dragging on complex curves with
high-frequency components. However, it is possible to
slightly modify this solution and obtain a dragging method
that meets our proposed requirements reasonably well.

The 3D Distance Method
We build on the closest point algorithm in order to benefit
from its high responsiveness, its ability to enforce prox-
imity and its support for coarse exploration. We enforce
continuity by taking arc-length distance into account when
searching for the closest point.
The Method
The 3D distance method consists of expressing the curve in
(x, y, z) coordinates instead of (x, y). We do this by map-
ping a point’s z coordinates to its arc-length distance from
the curve’s origin. This mapping takes the form of a linear
function)(parclenkpz ⋅= , where k is a scale factor. The
curve's x and y coordinates are left unchanged.
The pointer’s coordinates are also expressed in a 3D space
with x, y unchanged and z mapped to the z-coordinate of
the currently active (dragged) point on the curve.
If Ca is the location of the currently active point on the
curve, the 3D distance between the pointer p and any point
C on the curve is obtained by the following equation:

222)()()(CCkCpCpD ayyxx ⋅+−+−= (1)

Where px and py are the coordinates of the pointer p on the
screen, Cx and Cy are the coordinates of the point C on the
2D curve, and CC a

 is the arc-length distance between Ca
and C on the 2D curve. Notice that this algorithm reduces
to the standard 2D closest point when k = 0.
The initial active point Ca is obtained using a standard 2D
closest-point search. Then, on each drag event, the new Ca
is the point C which minimizes equation (1).

Submitted to UIST'07 - Unpublished document

Page 8 of 10

Jumps
Although the 3D distance algorithm preserves continuity at
intersection neighborhoods, a jump will occur if the user
"insists" on dragging away from the current region. The
jumping threshold depends on the value of the z-scaling
constant k. k ≈ 1 yields good results for video navigation.
Because the 3D distance method tries to preserve continu-
ity, jumps occur less frequently than when using a closest
point solution. However, jumps that occur are discernibly
larger. This is a natural result of the combined support for
arc-length continuity and coarse exploration. The fact that
jumps are both larger and more difficult to produce yields a
natural interaction style by which local dragging can be
bypassed using "pull gestures". Very large jumps can be
smoothed using animations, provided that these animations
are fast enough to meet the responsiveness criterion.
Adding Support for Directional Continuity
As stated, the 3D distance method addresses the problem of
arc-length continuity but not directional continuity. We add
this support by introducing a small discontinuity in the
distance function, by adding a term kD > 0 in equation (1)
whenever CC a and aa CC t)1(− have opposite signs. This

will move the already visited region further away when
searching for the closest point and thus preserve directional
continuity on cusps. As a result, it will be slightly more
difficult to go back (i.e., change the arc-length direction of
motion) on the curve, kD being the travel distance required
to go back. kD ≈ 5 yields good results for video navigation.
Maintaining Interactive Rates
The 3D distance method requires computing the distance
between P and each of the curve segments. Because the
curves can have large numbers of vertices, an optimization
technique is desirable to ensure interactive system respon-
se.
Although we could have used a data structure to optimize
our search [18], we found a simpler approach based on our
3D formulation. Notice that the absolute value of the z-
component of our distance metric CCkd az ⋅= increases

monotonically as the candidate point C moves away from
Ca. Additionally, since it is only one component of the
distance metric, dz can be used as a lower bound on the
total distance between C and Ca. Therefore, given a mini-
mum candidate distance D to the curve, we can discard all
points on the curve with dz > D from our closest point
search.
This leads to the following algorithm: we search forward
and backward along the curve beginning from the initial
active point Ca. Each branch of the search halts when the
distance dz is greater than the candidate minimum distance
or when the end of the curve is reached.

Curve Filtering
Curves can contain local features that will likely never be
followed by the user during curvilinear dragging. For ex-
ample, it might contain small frequency components that

are above the display capabilities and/or the pointing accu-
racy of the input device. In the case of video motion
curves, noise can result from motion estimation artifacts,
such as feature mismatches. Removing these components
will likely improve curvilinear manipulations.
Due to the proximity criteria, filtering should not signifi-
cantly modify the curves. We thus opted for a shrinkage-
free smoothing algorithm, which behaves like a low-pass
filter [31]. This efficiently removes variations too small to
be followed, while preserving most of the curve’s features.

PREVIOUS WORK ON VIDEO BROWSING
Video browsing by direct manipulation is related to several
research areas. We previously discussed related work on
direct manipulation and computer vision. We now compare
our method with prior work on video browsing.
Despite increasing computing power, watching a video
using regular software does not significantly differ from
the way we used to watch videos on analog video cassette
recorders (VCR) [16]. Video player’s mostly use tradi-
tional VCR controls, enabling playback at different rates.
The only significant difference is the seeker bar, allowing
random access and continuous navigation in the video
timeline. Other innovations in browsing include non-linear
navigation, visual summaries, and content-based video
retrieval.

Non-Linear Navigation
Video streams often contain meaningful events, some of
which can be extracted automatically, e.g., scene cuts, to
support intelligent skip mechanisms [16]. Videos also have
segments of different importance, and static scenes can be
detected and used to speed-up video playback [16, 33].
Different levels of “interestingness” can be inferred by
estimating motion activity. Such information can be used to
support adaptive fast-forward, i.e., changing the playback
rate so as to maintain a constant ”visual pace” [22, 33].
Adaptive fast-forward approaches are related to our tech-
nique, because they use actual motions in the image space
to facilitate video browsing. But they show their limits in
the presence of concurrent motions. For example, if a video
involves objects moving at very different speeds (e.g., cars
and pedestrians), it is not clear which of them should be
taken into account. Our direct manipulation technique
addresses this by allowing the user to specify the motion of
interest: clicking on a slow pedestrian will provide fine
access to small time segment, whereas clicking on a fast car
will provide coarse grain access to a big time segment.

Visual Summaries
Combining video content analysis with visualization has
been a popular method for addressing the problem of
searching in long videos. The most common approach
consists of extracting a set of relevant key-frames and or-
ganizing them into mosaics or interactive storyboards [33].
Video key-frames can be also laid out on the seeker widget
in order to provide an overview of the video [24]. This

Submitted to UIST'07 - Unpublished document

Page 9 of 10

system also supports multi-scale navigation on the timeline
with a pressure-sensitive stylus.
Recently, Goldman et al. [10] proposed a method for gen-
erating schematic storyboards, and described a technique
that can be considered as a precursor of our system. Sche-
matic arrows were generated from the motion of objects of
interest, and included a slider that allows navigation into
the video. However, the video was shown in a different
window and was indirectly manipulated through the story-
board. Also, the system was targeted towards video editing
tasks and required user assistance for generating the story-
board.

Content-Based Video Retrieval
A number of contributions in the field of multimedia data-
bases explored the use of images and motion trajectories
for indexing and searching video content [26, 30]. Al-
though some of these tools include sketch-based GUIs,
they all use a conversational interaction paradigm: the user
first makes a query, then waits for the results. This is sig-
nificantly different from our direct manipulation approach,
which affords browsing and local exploration.

CONCLUSION AND FUTURE WORK
We presented an original method for browsing videos,
which brings the benefits of direct manipulation to an ac-
tivity which has previously typically been experienced
through indirect interaction. In addition to the potential
improvements to the user experience, we believe our ap-
proach can significantly facilitate targeting tasks in the
image space. We plan to conduct user studies to confirm
that hypothesis, and quantify the advantages and the limits
of direct manipulation in a variety of video navigation
tasks.
Browsing video by direct manipulation presents several
research challenges that we addressed in this paper. One
challenge was the automatic extraction of motion trajecto-
ries from videos. We showed how well-established com-
puter vision tools allow extracting such information with
enough accuracy for the purposes of interaction, at least for
videos involving large and continuous motion.
We believe that commercial video players should soon be
able to support direct manipulation by exploiting motion
information already present in video files [30, 34]. Since
the image view-port is currently unused for interaction,
there is no real cost associated with such a transition.
Bringing touch-sensitivity and direct manipulation to the
home cinema might also change how people experience
movies.
Browsing video by direct manipulation presents a number
of challenges from the HCI point of view. Dragging video
content is fundamentally different from dragging rigid GUI
entities. We introduced the concept of relative flow drag-
ging as a general solution to the manipulation of arbitrary
motions constrained to one degree of freedom.
Supporting relative flow dragging requires solving the
particular case of curvilinear dragging, for which no satis-

factory method has been proposed so far. We described an
algorithm that has a number of desirable properties. This
algorithm has been tested on video navigation, but can be
applied to any task involving objects dragged on prede-
fined paths. Examples include geometry learning environ-
ments [12], 3D modeling software [2] and GUI widgets [1,
11].
Applications of the more general relative flow dragging
paradigm are less commonplace, but video browsing is not
the only scenario one can think about. Relative flow drag-
ging can bring interactivity to a variety of applications,
including information visualization systems, in which in-
teraction is traditionally mediated by widgets. It can also be
useful in computer animation [19], including within author-
ing software like Flash or Maya, where being able to click
and drag objects might be more compelling than scrubbing
a timeline when working with a partially authored or evolv-
ing 2D or 3D animation. Another application might be as
an application agnostic GUI revisitation system [6].
They are several challenges related to relative flow drag-
ging that we would like to address in the future. One of
them is providing a better empirically-based support for
relative dragging that accounts for non-translational in-
duced motions [21]. Another is the generalization of flow
dragging to multi-dimensional motions.

ACKNOWLEDGMENTS
Thanks to Patricio Simari, Digby Elliott, Tomer Mosco-
vich, Shahzad Malik, Nigel Morris and members of the
Dynamic Project Laboratory (www.dgp.toronto.edu) at the
University of Toronto for their helpful comments.

REFERENCES
1. Accot, J. and Zhai, S. (1997). Beyond Fitts' law: models

for trajectory-based HCI tasks. CHI. p. 295-302.

2. Autodesk Maya. http://www.autodesk.com/

3. Beauchemin, S.S. and Barron, J.L. (1995). The compu-
tation of optical flow. ACM Computing Surveys, 27(3).
p. 433-467.

4. Beaudouin-Lafon, M. (2000). Instrumental Interaction:
An interaction model for designing post-WIMP user in-
terfaces. CHI. p. 446-453.

5. Beaudouin-Lafon, M. (2001). Novel interaction tech-
niques for overlapping windows. UIST. p. 153-154.

6. Bezerianos, A., Dragicevic, P. and Balakrishnan, R.
(2006). Mnemonic rendering: an image-based approach
for exposing hidden changes in dynamic displays.
UIST. p. 159-168.

7. Buxton, W. (1986). There's more to interaction than
meets the eye: some issues in manual input. In User
Centered System Design: New Perspectives on Human-
Computer Interaction. Lawrence Erlbaum. p. 19-337.

8. Cheng, Y. (1995). Mean shift, mode seeking, and clus-
tering. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 17(8). p. 790-799.

Submitted to UIST'07 - Unpublished document

Page 10 of 10

9. Dragicevic, P., Huot, S. and Huot, S. (2002). Spira-
Clock: a continuous and non-intrusive display for up-
coming events. CHI Extended Abstracts. p. 604-605.

10. Goldman, D.B., Curless, B., Salesin, D. and Seitz, S.M.
(2006). Schematic storyboarding for video visualization
and editing. SIGGRAPH. p. 862-871.

11. Guimbretière, F. (2000). FlowMenu: combining com-
mand, text, and data entry. UIST. p. 213-216.

12. Hölzl, R. (1996). How does ‘dragging’ affect the learn-
ing of geometry? International Journal of Computers
for Mathematical Learning, 1(2). p. 169-187.

13. Hutchins, E.L., Hollan, J.D. and Norman, D.A. (1987).
Direct manipulation interfaces. In Human-Computer in-
teraction: A Multidisciplinary Approach. R. M.
Baecker, Ed. Morgan Kaufmann. p. 468-470.

14. Irani, M., Anadan, P. and Hsu, H. (1995). Mosaic based
representations of video sequences and their applica-
tions. Intl. Conference on Computer Vision. p. 605-611.

15. Kim, C. and Hwang, J. (2002). Fast and automatic
video object segmentation and tracking for content-
based applications. IEEE Trans. Circuits and Systems
for Video Technology, 12. p. 122-129.

16. Li, F.C., Gupta, A., Sanocki, E., He, L. and Rui, Y.
(2000). Browsing digital video. CHI. p. 169-176.

17. Lowe, D.G. (2004), Distinctive image features from
scale-invariant keypoints. International Journal of
Computer Vision, 60(2). p. 91-110.

18. Maier, D., Hesser, J. and Männer, R. (2003). Fast and
accurate closest point search on triangulated surfaces
and its application to motion estimation. WSEAS Intl.
Conference on Signal, Speech and Image Processing.

19. Ngo, T., Cutrell, D., Dana, J., Donald, B., Loeb, L. and
Zhu, S. (2000). Accessible animation and customizable
graphics via simplicial configuration modeling.
SIGGRAPH. p. 403-410.

20. Nowozin, S. autopano-sift − Automatic panorama
stitching package. http://user.cs.tu-berlin.de/~nowozin/
autopano-sift/

21. Pack, C. and Mingolla E. (1998). Global induced mo-
tion and visual stability in an optic flow illusion. Vision
Research, 38. p. 3083-3093.

22. Peker, K.A., Divakaran, A. Sun, H. (2001). Constant
pace skimming and temporal sub-sampling of video us-
ing motion activity. IEEE International Conference on
Image Processing, Vol. 3. p. 414-417.

23. Proteau, L. and Masson, G. (1997). Visual perception
modifies goal-directed movement control: Supporting
evidence from a visual perturbation paradigm. The

Quarterly Journal of Experimental Psychology, 50,
726-741.

24. Ramos, G. and Balakrishnan, R. (2003). Fluid interac-
tion techniques for the control and annotation of digital
video. UIST. p. 105-114.

25. Schneiderman, B. (1992). Designing the user interface:
Effective strategies for effective human-computer inter-
action. Addison-Wesley.

26. Shim, C. and Chang, J. (2004). Trajectory-based video
retrieval for multimedia information systems. Proc.
ADVIS, LNCS 3261. p. 372-382.

27. Shoemake, K. (1992). ARCBALL: a user interface for
specifying three-dimensional orientation using a mouse.
Graphics Interface. p. 151-156.

28. Sinha, S., Frahm, J.M. and Pollefeys M. (2006). GPU-
based video feature tracking and matching. Tech. Rep.
TR06-012, University of North Carolina at Chapel Hill.

29. Snavely, N., Seitz, S.M. and Szeliski, R. (2006). Photo
tourism: exploring photo collections in 3D. ACM
Transactions on Graphics, 25(3). p. 835-846.

30. Su, C., Liao, I.M. and Fan, K. (2005). A motion-flow-
based fast video retrieval system. ACM SIGMM inter-
national Workshop on Multimedia Information Re-
trieval. p. 105-112.

31. Taubin, G. (1995). Curve and surface smoothing with-
out shrinkage. Intl. Conference on Computer Vision. p.
852.

32. Thorne, M., Burke, D. and van de Panne, M. (2004).
Motion doodles: an interface for sketching character
motion. SIGGRAPH. p. 424-431.

33. Truong, B.T. and Venkatesh, S. (2007). Video abstrac-
tion: A systematic review and classification. ACM
Transactions on Multimedia Computing, Communica-
tions, and Applications, 3(1). p. 1-37.

34. Wei, J. (2003). An efficient motion estimation,method
for MPEG-4 video encoder. IEEE Transactions on
Consumer Electronics, 49(2). p. 441-446.

35. Yilmaz, A., Javed, O. and Shah, M. (2006). Object
tracking: A survey. ACM Computing Surveys, 38(4). p.
1-45.

36. Zivotofsky, A.Z. (2004). The Duncker illusion: inter-
subject variability, brief exposure, and the role of eye
movements in its generation. Investigative Ophthalmol-
ogy and Visual Science, 45. p. 2867–2872.

Submitted to UIST'07 - Unpublished document

